Higher-genus Fay-like identities from meromorphic generating functions (2409.08208v1)
Abstract: A possible way of constructing polylogarithms on Riemann surfaces of higher genera facilitates integration kernels, which can be derived from generating functions incorporating the geometry of the surface. Functional relations between polylogarithms rely on identities for those integration kernels. In this article, we derive identities for Enriquez' meromorphic generating function and investigate the implications for the associated integration kernels. The resulting identities are shown to be exhaustive and therefore reproduce all identities for Enriquez' kernels conjectured in arXiv:2407.11476 recently.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.