Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

EZIGen: Enhancing zero-shot personalized image generation with precise subject encoding and decoupled guidance (2409.08091v4)

Published 12 Sep 2024 in cs.CV

Abstract: Zero-shot personalized image generation models aim to produce images that align with both a given text prompt and subject image, requiring the model to incorporate both sources of guidance. Existing methods often struggle to capture fine-grained subject details and frequently prioritize one form of guidance over the other, resulting in suboptimal subject encoding and imbalanced generation. In this study, we uncover key insights into overcoming such drawbacks, notably that 1) the choice of the subject image encoder critically influences subject identity preservation and training efficiency, and 2) the text and subject guidance should take effect at different denoising stages. Building on these insights, we introduce a new approach, EZIGen, that employs two main components: leveraging a fixed pre-trained Diffusion UNet itself as subject encoder, following a process that balances the two guidances by separating their dominance stage and revisiting certain time steps to bootstrap subject transfer quality. Through these two components, EZIGen, initially built upon SD2.1-base, achieved state-of-the-art performances on multiple personalized generation benchmarks with a unified model, while using 100 times less training data. Moreover, by further migrating our design to SDXL, EZIGen is proven to be a versatile model-agnostic solution for personalized generation. Demo Page: zichengduan.github.io/pages/EZIGen/index.html

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 72 likes.

Upgrade to Pro to view all of the tweets about this paper: