Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Still More Shades of Null: An Evaluation Suite for Responsible Missing Value Imputation (2409.07510v5)

Published 11 Sep 2024 in cs.AI, cs.CY, and cs.LG

Abstract: Data missingness is a practical challenge of sustained interest to the scientific community. In this paper, we present Shades-of-Null, an evaluation suite for responsible missing value imputation. Our work is novel in two ways (i) we model realistic and socially-salient missingness scenarios that go beyond Rubin's classic Missing Completely at Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) settings, to include multi-mechanism missingness (when different missingness patterns co-exist in the data) and missingness shift (when the missingness mechanism changes between training and test) (ii) we evaluate imputers holistically, based on imputation quality and imputation fairness, as well as on the predictive performance, fairness and stability of the models that are trained and tested on the data post-imputation. We use Shades-of-Null to conduct a large-scale empirical study involving 29,736 experimental pipelines, and find that while there is no single best-performing imputation approach for all missingness types, interesting trade-offs arise between predictive performance, fairness and stability, based on the combination of missingness scenario, imputer choice, and the architecture of the predictive model. We make Shades-of-Null publicly available, to enable researchers to rigorously evaluate missing value imputation methods on a wide range of metrics in plausible and socially meaningful scenarios.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com