Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz (2409.06992v1)

Published 11 Sep 2024 in quant-ph

Abstract: In the Quantum-Train (QT) framework, mapping quantum state measurements to classical neural network weights is a critical challenge that affects the scalability and efficiency of hybrid quantum-classical models. The traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability. To address these issues, we propose replacing the MLP with a tensor network-based model and introducing a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes. This approach enhances scalability, efficiently represents high-dimensional data, and maintains a compact model structure. Our enhanced QT framework retains the benefits of reduced parameter count and independence from quantum resources during inference. Experimental results on benchmark datasets demonstrate that the tensor network-based QT framework achieves competitive performance with improved efficiency and generalization, offering a practical solution for scalable hybrid quantum-classical machine learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube