Lipschitz Stability of an Inverse Problem of Transmission Waves with Variable Jumps (2409.06260v1)
Abstract: This article studies an inverse problem for a transmission wave equation, a system where the main coefficient has a variable jump across an internal interface given by the boundary between two subdomains. The main result obtains Lipschitz stability in recovering a zeroth-order coefficient in the equation. The proof is based on the Bukhgeim-Klibanov method and uses a new one-parameter global Carleman inequality, specifically constructed for the case of a variable main coefficient which is discontinuous across a strictly convex interface. In particular, our hypothesis allows the main coefficient to vary smoothly within each subdomain up to the interface, thereby extending the preceding literature on the subject.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.