Variational Search Distributions (2409.06142v6)
Abstract: We develop VSD, a method for conditioning a generative model of discrete, combinatorial designs on a rare desired class by efficiently evaluating a black-box (e.g. experiment, simulation) in a batch sequential manner. We call this task active generation; we formalize active generation's requirements and desiderata, and formulate a solution via variational inference. VSD uses off-the-shelf gradient based optimization routines, can learn powerful generative models for desirable designs, and can take advantage of scalable predictive models. We derive asymptotic convergence rates for learning the true conditional generative distribution of designs with certain configurations of our method. After illustrating the generative model on images, we empirically demonstrate that VSD can outperform existing baseline methods on a set of real sequence-design problems in various protein and DNA/RNA engineering tasks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.