Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Limits on the computational expressivity of non-equilibrium biophysical processes (2409.05827v1)

Published 9 Sep 2024 in cond-mat.dis-nn, cond-mat.stat-mech, and q-bio.MN

Abstract: Many biological decision-making processes can be viewed as performing a classification task over a set of inputs, using various chemical and physical processes as "biological hardware." In this context, it is important to understand the inherent limitations on the computational expressivity of classification functions instantiated in biophysical media. Here, we model biochemical networks as Markov jump processes and train them to perform classification tasks, allowing us to investigate their computational expressivity. We reveal several unanticipated limitations on the input-output functions of these systems, which we further show can be lifted using biochemical mechanisms like promiscuous binding. We analyze the flexibility and sharpness of decision boundaries as well as the classification capacity of these networks. Additionally, we identify distinctive signatures of networks trained for classification, including the emergence of correlated subsets of spanning trees and a creased "energy landscape" with multiple basins. Our findings have implications for understanding and designing physical computing systems in both biological and synthetic chemical settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 54 likes.

Upgrade to Pro to view all of the tweets about this paper: