Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

No-dimensional Helly's theorem in uniformly convex Banach spaces (2409.05744v1)

Published 9 Sep 2024 in math.FA

Abstract: We study the ``no-dimensional'' analogue of Helly's theorem in Banach spaces. Specifically, we obtain the following no-dimensional Helly-type results for uniformly convex Banach spaces: Helly's theorem, fractional Helly's theorem, colorful Helly's theorem, and colorful fractional Helly's theorem. The combinatorial part of the proofs for these Helly-type results is identical to the Euclidean case as presented in \cite{adiprasito2020theorems}. The primary difference lies in the use of a certain geometric inequality in place of the Pythagorean theorem. This inequality can be explicitly expressed in terms of the modulus of convexity of a Banach space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: