Papers
Topics
Authors
Recent
2000 character limit reached

Parameter estimation for fractional stochastic heat equations : Berry-Esséen bounds in CLTs (2409.05416v1)

Published 9 Sep 2024 in math.ST, math.PR, and stat.TH

Abstract: The aim of this work is to estimate the drift coefficient of a fractional heat equation driven by an additive space-time noise using the Maximum likelihood estimator (MLE). In the first part of the paper, the first $N$ Fourier modes of the solution are observed continuously over a finite time interval $[0, T ]$. The explicit upper bounds for the Wasserstein distance for the central limit theorem of the MLE is provided when $N \rightarrow \infty$ and/or $T \rightarrow \infty$. While in the second part of the paper, the $N$ Fourier modes are observed at uniform time grid : $t_i = i \frac{T}{M}$, $i=0,..,M,$ where $M$ is the number of time grid points. The consistency and asymptotic normality are studied when $T,M,N \rightarrow + \infty$ in addition to the rate of convergence in law in the CLT.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: