Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TAVP: Task-Adaptive Visual Prompt for Cross-domain Few-shot Segmentation (2409.05393v2)

Published 9 Sep 2024 in cs.CV

Abstract: While large visual models (LVM) demonstrated significant potential in image understanding, due to the application of large-scale pre-training, the Segment Anything Model (SAM) has also achieved great success in the field of image segmentation, supporting flexible interactive cues and strong learning capabilities. However, SAM's performance often falls short in cross-domain and few-shot applications. Previous work has performed poorly in transferring prior knowledge from base models to new applications. To tackle this issue, we propose a task-adaptive auto-visual prompt framework, a new paradigm for Cross-dominan Few-shot segmentation (CD-FSS). First, a Multi-level Feature Fusion (MFF) was used for integrated feature extraction as prior knowledge. Besides, we incorporate a Class Domain Task-Adaptive Auto-Prompt (CDTAP) module to enable class-domain agnostic feature extraction and generate high-quality, learnable visual prompts. This significant advancement uses a unique generative approach to prompts alongside a comprehensive model structure and specialized prototype computation. While ensuring that the prior knowledge of SAM is not discarded, the new branch disentangles category and domain information through prototypes, guiding it in adapting the CD-FSS. Comprehensive experiments across four cross-domain datasets demonstrate that our model outperforms the state-of-the-art CD-FSS approach, achieving an average accuracy improvement of 1.3\% in the 1-shot setting and 11.76\% in the 5-shot setting.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.