Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stability and convergence analysis of AdaGrad for non-convex optimization via novel stopping time-based techniques (2409.05023v3)

Published 8 Sep 2024 in math.OC, cs.LG, and stat.ML

Abstract: Adaptive gradient optimizers (AdaGrad), which dynamically adjust the learning rate based on iterative gradients, have emerged as powerful tools in deep learning. These adaptive methods have significantly succeeded in various deep learning tasks, outperforming stochastic gradient descent. However, despite AdaGrad's status as a cornerstone of adaptive optimization, its theoretical analysis has not adequately addressed key aspects such as asymptotic convergence and non-asymptotic convergence rates in non-convex optimization scenarios. This study aims to provide a comprehensive analysis of AdaGrad and bridge the existing gaps in the literature. We introduce a new stopping time technique from probability theory, which allows us to establish the stability of AdaGrad under mild conditions. We further derive the asymptotically almost sure and mean-square convergence for AdaGrad. In addition, we demonstrate the near-optimal non-asymptotic convergence rate measured by the average-squared gradients in expectation, which is stronger than the existing high-probability results. The techniques developed in this work are potentially of independent interest for future research on other adaptive stochastic algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: