Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-Grained Representation Learning via Multi-Level Contrastive Learning without Class Priors (2409.04867v3)

Published 7 Sep 2024 in cs.CV

Abstract: Recent advances in unsupervised representation learning often rely on knowing the number of classes to improve feature extraction and clustering. However, this assumption raises an important question: is the number of classes always necessary, and do class labels fully capture the fine-grained features within the data? In this paper, we propose Contrastive Disentangling (CD), a framework designed to learn representations without relying on class priors. CD leverages a multi-level contrastive learning strategy, integrating instance-level and feature-level contrastive losses with a normalized entropy loss to capture semantically rich and fine-grained representations. Specifically, (1) the instance-level contrastive loss separates feature representations across samples; (2) the feature-level contrastive loss promotes independence among feature heads; and (3) the normalized entropy loss ensures feature diversity and prevents feature collapse. Extensive experiments on CIFAR-10, CIFAR-100, STL-10, and ImageNet-10 demonstrate that CD outperforms existing methods in scenarios where class information is unavailable or ambiguous. The code is available at https://github.com/Hoper-J/Contrastive-Disentangling.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com