Realizations through Weakly Reversible Networks and the Globally Attracting Locus (2409.04802v1)
Abstract: We investigate the possibility that for any given reaction rate vector $k$ associated with a network $G$, there exists another network $G'$ with a corresponding reaction rate vector that reproduces the mass-action dynamics generated by $(G,k)$. Our focus is on a particular class of networks for $G$, where the corresponding network $G'$ is weakly reversible. In particular, we show that strongly endotactic two-dimensional networks with a two dimensional stoichiometric subspace, as well as certain endotactic networks under additional conditions, exhibit this property. Additionally, we establish a strong connection between this family of networks and the locus in the space of rate constants of which the corresponding dynamics admits globally stable steady states.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.