Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Leveraging Contrastive Learning and Self-Training for Multimodal Emotion Recognition with Limited Labeled Samples (2409.04447v1)

Published 23 Aug 2024 in cs.SD, cs.AI, and eess.AS

Abstract: The Multimodal Emotion Recognition challenge MER2024 focuses on recognizing emotions using audio, language, and visual signals. In this paper, we present our submission solutions for the Semi-Supervised Learning Sub-Challenge (MER2024-SEMI), which tackles the issue of limited annotated data in emotion recognition. Firstly, to address the class imbalance, we adopt an oversampling strategy. Secondly, we propose a modality representation combinatorial contrastive learning (MR-CCL) framework on the trimodal input data to establish robust initial models. Thirdly, we explore a self-training approach to expand the training set. Finally, we enhance prediction robustness through a multi-classifier weighted soft voting strategy. Our proposed method is validated to be effective on the MER2024-SEMI Challenge, achieving a weighted average F-score of 88.25% and ranking 6th on the leaderboard. Our project is available at https://github.com/WooyoohL/MER2024-SEMI.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube