The Influence of Faulty Labels in Data Sets on Human Pose Estimation (2409.03887v2)
Abstract: In this study we provide empirical evidence demonstrating that the quality of training data impacts model performance in Human Pose Estimation (HPE). Inaccurate labels in widely used data sets, ranging from minor errors to severe mislabeling, can negatively influence learning and distort performance metrics. We perform an in-depth analysis of popular HPE data sets to show the extent and nature of label inaccuracies. Our findings suggest that accounting for the impact of faulty labels will facilitate the development of more robust and accurate HPE models for a variety of real-world applications. We show improved performance with cleansed data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.