Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

HSF: Defending against Jailbreak Attacks with Hidden State Filtering (2409.03788v2)

Published 31 Aug 2024 in cs.CR, cs.AI, cs.CL, and cs.LG

Abstract: With the growing deployment of LLMs in daily applications like chatbots and content generation, efforts to ensure outputs align with human values and avoid harmful content have intensified. However, increasingly sophisticated jailbreak attacks threaten this alignment, aiming to induce unsafe outputs. Current defense efforts either focus on prompt rewriting or detection, which are limited in effectiveness due to the various design of jailbreak prompts, or on output control and detection, which are computationally expensive as they require LLM inference. Therefore, designing a pre-inference defense method that resists diverse jailbreak prompts is crucial for preventing LLM jailbreak attacks. We observe that jailbreak attacks, safe queries, and harmful queries exhibit different clustering patterns within the LLM's hidden state representation space. This suggests that by leveraging the LLM's hidden state representational capabilities, we can analyze the LLM's forthcoming behavior and proactively intervene for defense. In this paper, we propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF), a lossless architectural defense mechanism that enables the model to preemptively identify and reject adversarial inputs before the inference process begins. We activate its defensive potential through an additional plugin module, effectively framing the defense task as a classification problem. Experimental results on two benchmark datasets, utilizing three different LLMs, show that HSF significantly enhances resilience against six cutting-edge jailbreak attacks. It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries, with negligible inference overhead, and outperforming defense baselines.Our code and data are available at https://anonymous.4open.science/r/Hidden-State-Filtering-8652/

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com