Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Physics-informed Neural Networks with Fourier Features for Seismic Wavefield Simulation in Time-Domain Nonsmooth Complex Media (2409.03536v2)

Published 5 Sep 2024 in physics.geo-ph

Abstract: Physics-informed neural networks (PINNs) have great potential for flexibility and effectiveness in forward modeling and inversion of seismic waves. However, coordinate-based neural networks (NNs) commonly suffer from the "spectral bias" pathology, which greatly limits their ability to model high-frequency wave propagation in sharp and complex media. We propose a unified framework of Fourier feature physics-informed neural networks (FF-PINNs) for solving the time-domain wave equations. The proposed framework combines the stochastic gradient descent (SGD) strategy with an independently pre-trained wave velocity surrogate model to mitigate the singularity at the point source. The performance of the activation functions and gradient descent strategies are discussed through ablation experiments. In addition, we evaluate the accuracy comparison of Fourier feature mappings sampled from different families of distributions (Gaussian, Laplace, and uniform). The second-order paraxial approximation-based boundary conditions are incorporated into the loss function as a soft regularizer to eliminate spurious boundary reflections. Through the non-smooth Marmousi and Overthrust model cases, we emphasized the necessity of the absorbing boundary conditions (ABCs) constraints. The results of a series of numerical experiments demonstrate the accuracy and effectiveness of the proposed method for modeling high-frequency wave propagation in sharp and complex media.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube