Wrapped Gaussian Process Functional Regression Model for Batch Data on Riemannian Manifolds (2409.03181v1)
Abstract: Regression is an essential and fundamental methodology in statistical analysis. The majority of the literature focuses on linear and nonlinear regression in the context of the Euclidean space. However, regression models in non-Euclidean spaces deserve more attention due to collection of increasing volumes of manifold-valued data. In this context, this paper proposes a concurrent functional regression model for batch data on Riemannian manifolds by estimating both mean structure and covariance structure simultaneously. The response variable is assumed to follow a wrapped Gaussian process distribution. Nonlinear relationships between manifold-valued response variables and multiple Euclidean covariates can be captured by this model in which the covariates can be functional and/or scalar. The performance of our model has been tested on both simulated data and real data, showing it is an effective and efficient tool in conducting functional data regression on Riemannian manifolds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.