Papers
Topics
Authors
Recent
2000 character limit reached

On Advanced Monte Carlo Methods for Linear Algebra on Advanced Accelerator Architectures (2409.03095v1)

Published 4 Sep 2024 in math.NA, cs.DC, and cs.NA

Abstract: In this paper we present computational experiments with the Markov Chain Monte Carlo Matrix Inversion ($(\text{MC})2\text{MI}$) on several accelerator architectures and investigate their impact on performance and scalability of the method. The method is used as a preconditioner and for solving the corresponding system of linear equations iterative methods, such as generalized minimal residuals (GMRES) or bi-conjugate gradient (stabilized) (BICGstab), are used. Numerical experiments are carried out to highlight the benefits and deficiencies of both approaches and to assess their overall usefulness in light of scalability of the method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. Straßburg and V. N. Alexandrov, “Enhancing monte carlo preconditioning methods for matrix computations,” in Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, Queensland, Australia, 10-12 June, 2014, 2014, pp. 1580–1589. [Online]. Available: http://dx.doi.org/10.1016/j.procs.2014.05.143
  2. V. N. Alexandrov and O. A. Esquivel-Flores, “Towards monte carlo preconditioning approach and hybrid monte carlo algorithms for matrix computations,” Computers & Mathematics with Applications, vol. 70, no. 11, pp. 2709–2718, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.camwa.2015.08.035
  3. F. Vajargah et al., “Parallel monte carlo algorithms for matrix computations,” Ph.D. dissertation, University of Reading, 2001.
  4. J. Strassburg, “On hybrid and resilient Monte Carlo methods for linear algebra problems,” Ph.D. dissertation, The University of Reading, 2014.
  5. S. Branford, “Hybrid Monte Carlo Methods for Linear Algebra Problems,” Ph.D. dissertation, School of Systems Engineering, The University of Reading, April 2009.
  6. B. Carpentieri, I. Duff, and L. Giraud, “Some sparse pattern selection strategies for robust Frobenius norm minimization preconditioners in electromagnetism,” Numer. Linear Algebra Appl, vol. 7, pp. 667–685, 2000.
  7. B. Carpentieri, L. Giraud et al., “Experiments with sparse preconditioning of dense problems from electromagnetic applications,” CERFACS, Toulouse, France, Tech. Rep., 2000.
  8. G. Alléon, M. Benzi, and L. Giraud, “Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics,” Numerical Algorithms, vol. 16, no. 1, pp. 1–15, 1997.
  9. S. Branford, C. Sahin, A. Thandavan, C. Weihrauch, V. Alexandrov, and I. Dimov, “Monte Carlo Methods for Matrix Computations on the Grid,” Future Generation Computer Systems, vol. 24, no. 6, pp. 605 – 612, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/B6V06-4P8GWNW-1/2/a4fbfc616f7b37f8237a0e484563188f
  10. I. Dimov and V. Alexandrov, “A New Highly Convergent Monte Carlo Method for Matrix Computations,” Mathematics and Computers in Simulation, vol. 47, no. 2-5, pp. 165–181, Aug 1998.
  11. I. Dimov, V. Alexandrov, R. Papancheva, and C. Weihrauch, “Monte Carlo Numerical Treatment of Large Linear Algebra Problems,” in Lecture Notes in Computing Sciences: Computational Science - ICCS 2007, vol. 4487.   Berlin: Springer-Verlag GmbH, 2007, pp. 747–754.
  12. T. Evans, S. Hamilton, W. Joubert, and C. Engelmann, “MCREX - Monte Carlo Resilient Exascale Project,” http://www.csm.ornl.gov/newsite/documents/ CSMDSummer2013Newsletter.pdf, 2013.
  13. M. Benzi, C. Meyer, and M. Tuma, “A Sparse Approximate Inverse preconditioner for the Conjugate Gradient Method,” SIAM Journal on Scientific Computing, vol. 17, no. 5, pp. 1135–1149, 1996.
  14. T. Huckle, A. Kallischko, A. Roy, M. Sedlacek, and T. Weinzierl, “An efficient parallel implementation of the MSPAI preconditioner,” Parallel Computing, vol. 36, no. 5-6, pp. 273 – 284, 2010, parallel Matrix Algorithms and Applications. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S016781910900129X
  15. M. Grote and M. Hagemann, “SPAI: SParse Approximate Inverse Preconditioner,” Spaidoc. pdf paper in the SPAI, vol. 3, p. 1, 2006.
  16. T. Huckle, “Factorized sparse approximate inverses for preconditioning,” The Journal of Supercomputing, vol. 25, no. 2, pp. 109–117, 2003.
  17. J. Strassburg and V. Alexandrov, “On Scalability Behaviour of Monte Carlo Sparse Approximate Inverse for Matrix Computations,” in Proceedings of the ScalA 2013 Workshop.   ACM, 2013, p. 6.
  18. B. F. Vajargah, “A new algorithm with maximal rate convergence to obtain inverse matrix,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 280–286, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.amc.2007.02.085
  19. M. Hoemmen, R. Vuduc, and R. Nishtala, “Bebop sparse matrix converter,” University of California at Berkeley. Web, 2011.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.