Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Meal-taking activity monitoring in the elderly based on sensor data: Comparison of unsupervised classification methods (2409.02971v1)

Published 4 Sep 2024 in cs.LG, eess.SP, and stat.AP

Abstract: In an era marked by a demographic change towards an older population, there is an urgent need to improve nutritional monitoring in view of the increase in frailty. This research aims to enhance the identification of meal-taking activities by combining K-Means, GMM, and DBSCAN techniques. Using the Davies-Bouldin Index (DBI) for the optimal meal taking activity clustering, the results show that K-Means seems to be the best solution, thanks to its unrivalled efficiency in data demarcation, compared with the capabilities of GMM and DBSCAN. Although capable of identifying complex patterns and outliers, the latter methods are limited by their operational complexities and dependence on precise parameter configurations. In this paper, we have processed data from 4 houses equipped with sensors. The findings indicate that applying the K-Means method results in high performance, evidenced by a particularly low Davies-Bouldin Index (DBI), illustrating optimal cluster separation and cohesion. Calculating the average duration of each activity using the GMM algorithm allows distinguishing various categories of meal-taking activities. Alternatively, this can correspond to different times of the day fitting to each meal-taking activity. Using K-Means, GMM, and DBSCAN clustering algorithms, the study demonstrates an effective strategy for thoroughly understanding the data. This approach facilitates the comparison and selection of the most suitable method for optimal meal-taking activity clustering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.