2000 character limit reached
Extension of Gromov's Lipschitz order to with additive errors (2409.02459v1)
Published 4 Sep 2024 in math.MG
Abstract: Gromov's Lipschitz order is an order relation on the set of metric measure spaces. One of the compactifications of the space of isomorphism classes of metric measure spaces equipped with the concentration topology is constructed by using the Lipschitz order. The concentration topology is deeply related to the concentration of measure phenomenon. In this paper, we extend the Lipschitz order to that with additive errors and prove useful properties. We also discuss the relation of it to a map with the property of 1-Lipschitz up to an additive error.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.