Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

FrameCorr: Adaptive, Autoencoder-based Neural Compression for Video Reconstruction in Resource and Timing Constrained Network Settings (2409.02453v2)

Published 4 Sep 2024 in eess.IV, cs.CV, cs.ET, and cs.MM

Abstract: Despite the growing adoption of video processing via Internet of Things (IoT) devices due to their cost-effectiveness, transmitting captured data to nearby servers poses challenges due to varying timing constraints and scarcity of network bandwidth. Existing video compression methods face difficulties in recovering compressed data when incomplete data is provided. Here, we introduce FrameCorr, a deep-learning based solution that utilizes previously received data to predict the missing segments of a frame, enabling the reconstruction of a frame from partially received data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.