Topological communities in complex networks (2409.02317v2)
Abstract: Most complex systems can be captured by graphs or networks. Networks connect nodes (e.g.\ neurons) through edges (synapses), thus summarizing the system's structure. A popular way of interrogating graphs is community detection, which uncovers sets of geometrically related nodes. {\em Geometric communities} consist of nodes ``closer'' to each other than to others in the graph. Some network features do not depend on node proximity -- rather, on them playing similar roles (e.g.\ building bridges) even if located far apart. These features can thus escape proximity-based analyses. We lack a general framework to uncover such features. We introduce {\em topological communities}, an alternative perspective to decomposing graphs. We find clusters that describe a network as much as classical communities, yet are missed by current techniques. In our framework, each graph guides our attention to its relevant features, whether geometric or topological. Our analysis complements existing ones, and could be a default method to study networks confronted without prior knowledge. Classical community detection has bolstered our understanding of biological, neural, or social systems; yet it is only half the story. Topological communities promise deep insights on a wealth of available data. We illustrate this for the global airport network, human connectomes, and others.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.