Classically estimating observables of noiseless quantum circuits
Abstract: We present a classical algorithm for estimating expectation values of arbitrary observables on most quantum circuits across all circuit architectures and depths, including those with all-to-all connectivity. We prove that for any architecture where each circuit layer is equipped with a measure invariant under single-qubit rotations, our algorithm achieves a small error $\varepsilon$ on all circuits except for a small fraction $\delta$. The computational time is polynomial in qubit count and circuit depth for any small constant $\varepsilon, \delta$, and quasi-polynomial for inverse-polynomially small $\varepsilon, \delta$. For non-classically-simulable input states or observables, the expectation values can be estimated by augmenting our algorithm with classical shadows of the relevant state or observable. Our approach leverages a Pauli-path method under Heisenberg evolution. While prior works are limited to noisy quantum circuits, we establish classical simulability in noiseless regimes. Given that most quantum circuits in an architecture exhibit chaotic and locally scrambling behavior, our work demonstrates that estimating observables of such quantum dynamics is classically tractable across all geometries.
- Y.-Y.Ā Shi, L.-M.Ā Duan,Ā andĀ G.Ā Vidal,Ā Classical simulation of quantum many-body systems with a tree tensor network,Ā Phys. Rev. AĀ 74,Ā 022320 (2006).
- J.Ā BiamonteĀ andĀ V.Ā Bergholm,Ā Tensor networks in a nutshell,Ā arXiv preprint arXiv:1708.00006Ā (2017).
- J.Ā HauschildĀ andĀ F.Ā Pollmann,Ā Efficient numerical simulations with tensor networks: Tensor network python (tenpy),Ā SciPost Physics Lecture NotesĀ ,Ā 005 (2018).
- L. Causer, M. C. Bañuls, and J. P. Garrahan, Optimal sampling of dynamical large deviations in two dimensions via tensor networks, Physical Review Letters 130, 147401 (2023).
- I.Ā L.Ā MarkovĀ andĀ Y.Ā Shi,Ā Simulating quantum computation by contracting tensor networks,Ā SIAM Journal on ComputingĀ 38,Ā 963 (2008).
- S.Ā Singh, R.Ā N.Ā C.Ā Pfeifer,Ā andĀ G.Ā Vidal,Ā Tensor network decompositions in the presence of a global symmetry,Ā Phys. Rev. AĀ 82,Ā 050301 (2010).
- D.Ā Gottesman,Ā The heisenberg representation of quantum computers, talk at,Ā inĀ International Conference on Group Theoretic Methods in PhysicsĀ (Citeseer,Ā 1998).
- S.Ā AaronsonĀ andĀ D.Ā Gottesman,Ā Improved simulation of stabilizer circuits,Ā Physical Review AĀ 70,Ā 052328 (2004).
- S.Ā BravyiĀ andĀ D.Ā Gosset,Ā Improved classical simulation of quantum circuits dominated by clifford gates,Ā Phys. Rev. Lett.Ā 116,Ā 250501 (2016).
- T.Ā BeguÅ”iÄ, K.Ā Hejazi,Ā andĀ G.Ā K.Ā Chan,Ā Simulating quantum circuit expectation values by clifford perturbation theory,Ā arXiv preprint arXiv:2306.04797Ā (2023).
- V.Ā Galitski,Ā Quantum-to-classical correspondence and hubbard-stratonovich dynamical systems: A lie-algebraic approach,Ā Phys. Rev. AĀ 84,Ā 012118 (2011).
- G.Ā CarleoĀ andĀ M.Ā Troyer,Ā Solving the quantum many-body problem with artificial neural networks,Ā ScienceĀ 355,Ā 602 (2017).
- D.Ā A.Ā RobertsĀ andĀ B.Ā Yoshida,Ā Chaos and complexity by design,Ā Journal of High Energy PhysicsĀ 2017,Ā 121 (2017).
- G.Ā GonzĆ”lez-GarcĆa, J.Ā I.Ā Cirac,Ā andĀ R.Ā Trivedi,Ā Pauli path simulations of noisy quantum circuits beyond average case,Ā arXiv preprint arXiv:2407.16068Ā (2024).
- H.-Y.Ā Hu, S.Ā Choi,Ā andĀ Y.-Z.Ā You,Ā Classical shadow tomography with locally scrambled quantum dynamics,Ā Physical Review ResearchĀ 5,Ā 023027 (2023).
- H.-Y.Ā Huang, S.Ā Chen,Ā andĀ J.Ā Preskill,Ā Learning to predict arbitrary quantum processes,Ā arXiv preprint arXiv:2210.14894Ā (2022).
- H.-K.Ā Zhang, S.Ā Liu,Ā andĀ S.-X.Ā Zhang,Ā Absence of barren plateaus in finite local-depth circuits with long-range entanglement,Ā Physical Review LettersĀ 132,Ā 150603 (2024).
- J. Napp, Quantifying the barren plateau phenomenon for a model of unstructured variational ansätze, arXiv preprint arXiv:2203.06174 (2022).
- A.Ā Letcher, S.Ā Woerner,Ā andĀ C.Ā Zoufal,Ā Tight and efficient gradient bounds for parameterized quantum circuits,Ā arXiv preprint arXiv:2309.12681Ā (2023).
- N.Ā A.Ā Nemkov, E.Ā O.Ā Kiktenko,Ā andĀ A.Ā K.Ā Fedorov,Ā Fourier expansion in variational quantum algorithms,Ā Phys. Rev. AĀ 108,Ā 032406 (2023).
- T.Ā BeguÅ”iÄĀ andĀ G.Ā K.Ā Chan,Ā Fast classical simulation of evidence for the utility of quantum computing before fault tolerance,Ā arXiv preprint arXiv:2306.16372Ā (2023).
- H.-Y.Ā Huang, S.Ā Chen,Ā andĀ J.Ā Preskill,Ā Learning to predict arbitrary quantum processes,Ā PRX QuantumĀ 4,Ā 040337 (2023).
- E.Ā Gil-Fuster, J.Ā Eisert,Ā andĀ C.Ā Bravo-Prieto,Ā Understanding quantum machine learning also requires rethinking generalization,Ā Nature CommunicationsĀ 15,Ā 2277 (2024).
- S.Ā AaronsonĀ andĀ S.Ā Gunn,Ā On the classical hardness of spoofing linear cross-entropy benchmarking,Ā arXiv preprint arXiv:1910.12085Ā https://doi.org/10.48550/arXiv.1910.12085 (2019).
- A.Ā Tanggara, M.Ā Gu,Ā andĀ K.Ā Bharti,Ā Classically spoofing system linear cross entropy score benchmarking,Ā arXiv preprint arXiv:2405.00789Ā https://doi.org/10.48550/arXiv.2405.00789 (2024).
- N.Ā YuĀ andĀ T.-C.Ā Wei,Ā Learning marginals suffices!,Ā arXiv preprint arXiv:2303.08938Ā https://doi.org/10.48550/arXiv.2303.08938 (2023).
- A.Ā W.Ā Harrow,Ā Approximate orthogonality of permutation operators, with application to quantum information,Ā Letters in Mathematical PhysicsĀ 114,Ā 1 (2023).
- H.-Y.Ā Huang, R.Ā Kueng,Ā andĀ J.Ā Preskill,Ā Predicting many properties of a quantum system from very few measurements,Ā Nature PhysicsĀ 16,Ā 1050 (2020).
- A.Ā S.Ā NemirovskijĀ andĀ D.Ā B.Ā Yudin,Ā Problem complexity and method efficiency in optimization (1983).
- M.Ā R.Ā Jerrum, L.Ā G.Ā Valiant,Ā andĀ V.Ā V.Ā Vazirani,Ā Random generation of combinatorial structures from a uniform distribution,Ā Theoretical computer scienceĀ 43,Ā 169 (1986).
- T.Ā Schuster, J.Ā Haferkamp,Ā andĀ H.-Y.Ā Huang,Ā Random unitaries in extremely low depth,Ā arXiv preprint arXiv:2407.07754Ā (2024b).
- A.Ā A.Ā Mele,Ā Introduction to haar measure tools in quantum information: A beginnerās tutorial,Ā QuantumĀ 8,Ā 1340 (2024).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.