Papers
Topics
Authors
Recent
2000 character limit reached

Can Geometric Quantum Machine Learning Lead to Advantage in Barcode Classification? (2409.01496v1)

Published 2 Sep 2024 in quant-ph, cond-mat.dis-nn, and cs.CV

Abstract: We consider the problem of distinguishing two vectors (visualized as images or barcodes) and learning if they are related to one another. For this, we develop a geometric quantum machine learning (GQML) approach with embedded symmetries that allows for the classification of similar and dissimilar pairs based on global correlations, and enables generalization from just a few samples. Unlike GQML algorithms developed to date, we propose to focus on symmetry-aware measurement adaptation that outperforms unitary parametrizations. We compare GQML for similarity testing against classical deep neural networks and convolutional neural networks with Siamese architectures. We show that quantum networks largely outperform their classical counterparts. We explain this difference in performance by analyzing correlated distributions used for composing our dataset. We relate the similarity testing with problems that showcase a proven maximal separation between the BQP complexity class and the polynomial hierarchy. While the ability to achieve advantage largely depends on how data are loaded, we discuss how similar problems can benefit from quantum machine learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.