Papers
Topics
Authors
Recent
2000 character limit reached

Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching (2409.01416v2)

Published 2 Sep 2024 in cs.LG and cs.SC

Abstract: The symbolic discovery of Ordinary Differential Equations (ODEs) from trajectory data plays a pivotal role in AI-driven scientific discovery. Existing symbolic methods predominantly rely on fixed, pre-collected training datasets, which often result in suboptimal performance, as demonstrated in our case study in Figure 1. Drawing inspiration from active learning, we investigate strategies to query informative trajectory data that can enhance the evaluation of predicted ODEs. However, the butterfly effect in dynamical systems reveals that small variations in initial conditions can lead to drastically different trajectories, necessitating the storage of vast quantities of trajectory data using conventional active learning. To address this, we introduce Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching (APPS). Instead of directly selecting individual initial conditions, our APPS first identifies an informative region within the phase space and then samples a batch of initial conditions from this region. Compared to traditional active learning methods, APPS mitigates the gap of maintaining a large amount of data. Extensive experiments demonstrate that APPS consistently discovers more accurate ODE expressions than baseline methods using passively collected datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube