Topological degree as a discrete diagnostic for disentanglement, with applications to the $Δ$VAE
Abstract: We investigate the ability of Diffusion Variational Autoencoder ($\Delta$VAE) with unit sphere $\mathcal{S}2$ as latent space to capture topological and geometrical structure and disentangle latent factors in datasets. For this, we introduce a new diagnostic of disentanglement: namely the topological degree of the encoder, which is a map from the data manifold to the latent space. By using tools from homology theory, we derive and implement an algorithm that computes this degree. We use the algorithm to compute the degree of the encoder of models that result from the training procedure. Our experimental results show that the $\Delta$VAE achieves relatively small LSBD scores, and that regardless of the degree after initialization, the degree of the encoder after training becomes $-1$ or $+1$, which implies that the resulting encoder is at least homotopic to a homeomorphism.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.