Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Direct Kinematics, Inverse Kinematics, and Motion Planning of 1-DoF Rational Linkages (2409.01198v2)

Published 2 Sep 2024 in cs.RO

Abstract: This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree of freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss-Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: