Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

The integrable semi-discrete nonlinear Schrödinger equations with nonzero backgrounds: Bilinearization-reduction approach (2409.01063v1)

Published 2 Sep 2024 in nlin.SI, math-ph, and math.MP

Abstract: In this paper the classical and nonlocal semi-discrete nonlinear Schr\"{o}dinger (sdNLS) equations with nonzero backgrounds are solved by means of the bilinearization-reduction approach. In the first step of this approach, the unreduced sdNLS system with a nonzero background is bilinearized and its solutions are presented in terms of quasi double Casoratians. Then, reduction techniques are implemented to deal with complex and nonlocal reductions, which yields solutions for the four classical and nonlocal sdNLS equations with a plane wave background or a hyperbolic function background. These solutions are expressed with explicit formulae and allow classifications according to canonical forms of certain spectral matrix. In particular, we present explicit formulae for general rogue waves for the classical focusing sdNLS equation. Some obtained solutions are analyzed and illustrated.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.