Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

VPVet: Vetting Privacy Policies of Virtual Reality Apps (2409.00740v1)

Published 1 Sep 2024 in cs.CR

Abstract: Virtual reality (VR) apps can harvest a wider range of user data than web/mobile apps running on personal computers or smartphones. Existing law and privacy regulations emphasize that VR developers should inform users of what data are collected/used/shared (CUS) through privacy policies. However, privacy policies in the VR ecosystem are still in their early stages, and many developers fail to write appropriate privacy policies that comply with regulations and meet user expectations. In this paper, we propose VPVet to automatically vet privacy policy compliance issues for VR apps. VPVet first analyzes the availability and completeness of a VR privacy policy and then refines its analysis based on three key criteria: granularity, minimization, and consistency of CUS statements. Our study establishes the first and currently largest VR privacy policy dataset named VRPP, consisting of privacy policies of 11,923 different VR apps from 10 mainstream platforms. Our vetting results reveal severe privacy issues within the VR ecosystem, including the limited availability and poor quality of privacy policies, along with their coarse granularity, lack of adaptation to VR traits and the inconsistency between CUS statements in privacy policies and their actual behaviors. We open-source VPVet system along with our findings at repository https://github.com/kalamoo/PPAudit, aiming to raise awareness within the VR community and pave the way for further research in this field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub