Papers
Topics
Authors
Recent
2000 character limit reached

IAFI-FCOS: Intra- and across-layer feature interaction FCOS model for lesion detection of CT images (2409.00694v1)

Published 1 Sep 2024 in cs.CV

Abstract: Effective lesion detection in medical image is not only rely on the features of lesion region,but also deeply relative to the surrounding information.However,most current methods have not fully utilize it.What is more,multi-scale feature fusion mechanism of most traditional detectors are unable to transmit detail information without loss,which makes it hard to detect small and boundary ambiguous lesion in early stage disease.To address the above issues,we propose a novel intra- and across-layer feature interaction FCOS model (IAFI-FCOS) with a multi-scale feature fusion mechanism ICAF-FPN,which is a network structure with intra-layer context augmentation (ICA) block and across-layer feature weighting (AFW) block.Therefore,the traditional FCOS detector is optimized by enriching the feature representation from two perspectives.Specifically,the ICA block utilizes dilated attention to augment the context information in order to capture long-range dependencies between the lesion region and the surrounding.The AFW block utilizes dual-axis attention mechanism and weighting operation to obtain the efficient across-layer interaction features,enhancing the representation of detailed features.Our approach has been extensively experimented on both the private pancreatic lesion dataset and the public DeepLesion dataset,our model achieves SOTA results on the pancreatic lesion dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.