Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A classification of finite groups with small Davenport constant (2409.00363v2)

Published 31 Aug 2024 in math.GR and math.AC

Abstract: Let $G$ be a finite group. By a sequence over $G$, we mean a finite unordered string of terms from $G$ with repetition allowed, and we say that it is a product-one sequence if its terms can be ordered so that their product is the identity element of $G$. Then, the Davenport constant $\mathsf D (G)$ is the maximal length of a minimal product-one sequence, that is a product-one sequence which cannot be factored into two non-trivial product-one subsequences. The Davenport constant is a combinatorial group invariant that has been studied fruitfully over several decades in additive combinatorics, invariant theory, and factorization theory, etc. Apart from a few cases of finite groups, the precise value of the Davenport constant is unknown. Even in the abelian case, little is known beyond groups of rank at most two. On the other hand, for a fixed positive integer $r$, structural results characterizing which groups $G$ satisfy $\mathsf D (G) = r$ are rare. We only know that there are finitely many such groups. In this paper, we study the classification of finite groups based on the Davenport constant.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: