Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

The Cosmological CPT Theorem (2408.17406v1)

Published 30 Aug 2024 in hep-th, astro-ph.CO, and gr-qc

Abstract: The CPT theorem states that a unitary and Lorentz-invariant theory must also be invariant under a discrete symmetry $\mathbf{CRT}$ which reverses charge, time, and one spatial direction. In this article, we study a $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry group, in which two of the nontrivial symmetries (``Reflection Reality'' and a 180 degree rotation) are implied by Unitarity and Lorentz Invariance respectively, while the third is $\mathbf{CRT}$. (In cosmology, Scale Invariance plays the role of Lorentz Invariance.) This naturally leads to converses of the CPT theorem, as any two of the discrete $\mathbb{Z}_2$ symmetries will imply the third one. Furthermore, in many field theories, the Reflection Reality $\mathbb{Z}_2$ symmetry is actually sufficient to imply the theory is fully unitary, over a generic range of couplings. Building upon previous work on the Cosmological Optical Theorem, we derive non-perturbative reality conditions associated with bulk Reflection Reality (in all flat FLRW models) and $\mathbf{CRT}$ (in de Sitter spacetime), in arbitrary dimensions. Remarkably, this $\mathbf{CRT}$ constraint suffices to fix the phase of all wavefunction coefficients at future infinity (up to a real sign) -- without requiring any analytic continuation, or comparison to past infinity -- although extra care is required in cases where the bulk theory has logarithmic UV or IR divergences. This result has significant implications for de Sitter holography, as it allows us to determine the phases of arbitrary $n$-point functions in the dual CFT.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.