Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

C-R-T Fractionalization, Fermions, and Mod 8 Periodicity (2312.17126v2)

Published 28 Dec 2023 in hep-th, cond-mat.str-el, hep-ph, math-ph, and math.MP

Abstract: Charge conjugation (C), mirror reflection (R), time reversal (T), and fermion parity $(-1){\rm F}$ are basic discrete spacetime and internal symmetries of the Dirac fermions. In this article, we determine the group, called the C-R-T fractionalization, which is a group extension of $\mathbb{Z}_2{\rm C}\times\mathbb{Z}_2{\rm R}\times\mathbb{Z}_2{\rm T}$ by the fermion parity $\mathbb{Z}_2{\rm F}$, and its extension class in all spacetime dimensions $d$, for a single-particle fermion theory. For Dirac fermions, with the canonical CRT symmetry $\mathbb{Z}_2{\rm CRT}$, the C-R-T fractionalization has two possibilities that only depend on spacetime dimensions $d$ modulo 8, which are order-16 nonabelian groups, including the famous Pauli group. For Majorana fermions, we determine the R-T fractionalization in all spacetime dimensions $d=0,1,2,3,4\mod8$, an order-8 abelian or nonabelian group. For Weyl fermions, we determine the C or T fractionalization in all even spacetime dimensions $d$, which is an order-4 abelian group. We only have an order-2 $\mathbb{Z}_2{\rm F}$ group for Majorana-Weyl fermions. We determine the maximal number of linearly independent Dirac and Majorana mass terms and construct them explicitly. We also discuss how the conventional Dirac and Majorana mass terms break the symmetries C, R, or T. We study the domain wall dimensional reduction of the fermions and their C-R-T fractionalization: from $d$-dim Dirac to $(d-1)$-dim Dirac or Weyl and from $d$-dim Majorana to $(d-1)$-dim Majorana or Majorana-Weyl.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Julian Schwinger, “The Theory of Quantized Fields. I,” Phys. Rev. 82, 914–927 (1951).
  2. W. Pauli, “Niels Bohr and the Development of Physics,” McGraw-Hill, New York, and Pergamon Press, London  (1955), 10.1063/1.3060063.
  3. W. Pauli, “On the conservation of the Lepton charge,” Nuovo Cimento 6, 204 (1957).
  4. Gerhart Luders, “On the Equivalence of Invariance under Time Reversal and under Particle-Antiparticle Conjugation for Relativistic Field Theories,” Kong. Dan. Vid. Sel. Mat. Fys. Med. 28N5, 1–17 (1954).
  5. Gerhart Luders, “Proof of the TCP theorem,” Annals of Physics 2, 1–15 (1957).
  6. Juven Wang, “C-P-T fractionalization,” Phys. Rev. D 106, 105009 (2022), arXiv:2109.15320 [hep-th] .
  7. Ian Affleck, “Quantum Spin Chains and the Haldane Gap,” J. Phys. C 1, 3047 (1989).
  8. Edward Witten, “Fermion Path Integrals And Topological Phases,” Rev. Mod. Phys. 88, 035001 (2016), arXiv:1508.04715 [cond-mat.mes-hall] .
  9. Daniel S. Freed and Michael J. Hopkins, “Reflection positivity and invertible topological phases,” Geom. Topol. 25, 1165–1330 (2021), arXiv:1604.06527 [hep-th] .
  10. Clay Córdova, Kantaro Ohmori, Shu-Heng Shao,  and Fei Yan, “Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies,” Phys. Rev. D 102, 045019 (2020), arXiv:1910.14046 [hep-th] .
  11. Juven Wang, Yi-Zhuang You,  and Yunqin Zheng, “Gauge enhanced quantum criticality and time reversal deconfined domain wall: SU(2) Yang-Mills dynamics with topological terms,” Phys. Rev. Res. 2, 013189 (2020), arXiv:1910.14664 [cond-mat.str-el] .
  12. Michael E. Peskin and Daniel V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  13. Steven Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, 2005).
  14. A. Zee, Quantum field theory in a nutshell (2003).
  15. M. Srednicki, Quantum field theory (Cambridge University Press, 2007).
  16. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  17. Michael Stone, “Gamma matrices, Majorana fermions, and discrete symmetries in Minkowski and Euclidean signature,” J. Phys. A 55, 205401 (2022), arXiv:2009.00518 [hep-th] .
  18. Katsutaro Shimizu, “C, P and T transformations in higher dimensions,” Progress of theoretical physics 74, 610–613 (1985).
  19. Juven Wang, “Family Puzzle, Framing Topology, c−=24subscript𝑐24c_{-}=24italic_c start_POSTSUBSCRIPT - end_POSTSUBSCRIPT = 24 and 3(E8)11{}_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT Conformal Field Theories: 48/16 = 45/15 = 24/8 = 3,”   (2023), arXiv:2312.14928 [hep-th] .
  20. Zheng-Cheng Gu, “Fractionalized time reversal, parity, and charge conjugation symmetry in a topological superconductor: A possible origin of three generations of neutrinos and mass mixing,” Phys. Rev. Res. 2, 033290 (2020), arXiv:1308.2488 [hep-ph] .
  21. Abhishodh Prakash and Juven Wang, “Boundary Supersymmetry of (1+1)D Fermionic Symmetry-Protected Topological Phases,” Phys. Rev. Lett. 126, 236802 (2021a), arXiv:2011.12320 [cond-mat.str-el] .
  22. Abhishodh Prakash and Juven Wang, “Unwinding Fermionic SPT Phases: Supersymmetry Extension,” Phys. Rev. B 103, 085130 (2021b), arXiv:2011.13921 [cond-mat.str-el] .
  23. Alex Turzillo and Minyoung You, “Supersymmetric Boundaries of One-Dimensional Phases of Fermions beyond Symmetry-Protected Topological States,” Phys. Rev. Lett. 127, 026402 (2021), arXiv:2012.04621 [cond-mat.str-el] .
  24. Hitoshi Murayama, “Notes on Clifford Algebra and Spin(N) Representations Physics 230 A , Spring 2007,”   (2007).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com