Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Language-guided Scale-aware MedSegmentor for Lesion Segmentation in Medical Imaging (2408.17347v3)

Published 30 Aug 2024 in cs.CV

Abstract: In clinical practice, segmenting specific lesions based on the needs of physicians can significantly enhance diagnostic accuracy and treatment efficiency. However, conventional lesion segmentation models lack the flexibility to distinguish lesions according to specific requirements. Given the practical advantages of using text as guidance, we propose a novel model, Language-guided Scale-aware MedSegmentor (LSMS), which segments target lesions in medical images based on given textual expressions. We define this as a new task termed Referring Lesion Segmentation (RLS). To address the lack of suitable benchmarks for RLS, we construct a vision-language medical dataset named Reference Hepatic Lesion Segmentation (RefHL-Seg). LSMS incorporates two key designs: (i) Scale-Aware Vision-Language attention module, which performs visual feature extraction and vision-language alignment in parallel. By leveraging diverse convolutional kernels, this module acquires rich visual representations and interacts closely with linguistic features, thereby enhancing the model's capacity for precise object localization. (ii) Full-Scale Decoder, which globally models multi-modal features across multiple scales and captures complementary information between them to accurately delineate lesion boundaries. Additionally, we design a specialized loss function comprising both segmentation loss and vision-language contrastive loss to better optimize cross-modal learning. We validate the performance of LSMS on RLS as well as on conventional lesion segmentation tasks across multiple datasets. Our LSMS consistently achieves superior performance with significantly lower computational cost. Code and datasets will be released.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.