The variational principle for a marked Gibbs point process with infinite-range multibody interactions (2408.17170v1)
Abstract: We prove the Gibbs variational principle for the Asakura--Oosawa model in which particles of random size obey a hardcore constraint of non-overlap and are additionally subject to a temperature-dependent area interaction. The particle size is unbounded, leading to infinite-range interactions, and the potential cannot be written as a $k$-body interaction for fixed $k$. As a byproduct, we also prove the existence of infinite-volume Gibbs point processes satisfying the DLR equations. The essential control over the influence of boundary conditions can be established using the geometry of the model and the hard-core constraint.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.