Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search (2408.16890v1)

Published 29 Aug 2024 in cs.RO, cs.LG, and math.OC

Abstract: The rapid deployment of robotics technologies requires dedicated optimization algorithms to manage large fleets of autonomous agents. This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfiLLMent at workstations. The model maximizes throughput, while managing human workload at the workstations and congestion in the facility. We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation. The algorithm relies on an offline machine learning procedure to predict objective improvements based on subproblem features, and an online optimization model to generate a new subproblem at each iteration. In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches. In particular, our solution enhances the utilization of robotic fleets by coordinating robotic tasks for human operators to pick multiple items at once, and by coordinating robotic routes to avoid congestion in the facility.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube