Papers
Topics
Authors
Recent
2000 character limit reached

Invariants of the singularities of secant varieties of curves (2408.16736v2)

Published 29 Aug 2024 in math.AG

Abstract: Consider a smooth projective curve and a given embedding into projective space via a sufficiently positive line bundle. We can form the secant variety of $k$-planes through the curve. These are singular varieties, with each secant variety being singular along the last. We study invariants of the singularities for these varieties. In the case of an arbitrary curve, we compute the intersection cohomology in terms of the cohomology of the curve. We then turn our attention to rational normal curves. In this setting, we prove that all of the secant varieties are rational homology manifolds, meaning their singular cohomology satisfies Poincar\'e duality. We then compute the nearby and vanishing cycles for the largest nontrivial secant variety, which is a projective hypersurface.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.