Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics (2408.16716v1)

Published 29 Aug 2024 in math.AT and cs.CG

Abstract: The Vietoris-Rips filtration, the standard filtration on metric data in topological data analysis, is notoriously sensitive to outliers. Sheehy's subdivision-Rips bifiltration $\mathcal{SR}(-)$ is a density-sensitive refinement that is robust to outliers in a strong sense, but whose 0-skeleton has exponential size. For $X$ a finite metric space of constant doubling dimension and fixed $\epsilon>0$, we construct a $(1+\epsilon)$-homotopy interleaving approximation of $\mathcal{SR}(X)$ whose $k$-skeleton has size $O(|X|{k+2})$. For $k\geq 1$ constant, the $k$-skeleton can be computed in time $O(|X|{k+3})$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: