Papers
Topics
Authors
Recent
2000 character limit reached

sEMG-Driven Physics-Informed Gated Recurrent Networks for Modeling Upper Limb Multi-Joint Movement Dynamics (2408.16599v2)

Published 29 Aug 2024 in cs.LG

Abstract: Exoskeletons and rehabilitation systems have the potential to improve human strength and recovery by using adaptive human-machine interfaces. Achieving precise and responsive control in these systems depends on accurately estimating joint movement dynamics, such as joint angle, velocity, acceleration, external mass, and torque. While ML approaches have been employed to predict joint kinematics from surface electromyography (sEMG) data, traditional ML models often struggle to generalize across dynamic movements. In contrast, physics-informed neural networks integrate biomechanical principles, but their effectiveness in predicting full movement dynamics has not been thoroughly explored. To address this, we introduce the Physics-informed Gated Recurrent Network (PiGRN), a novel model designed to predict multi-joint movement dynamics from sEMG data. PiGRN uses a Gated Recurrent Unit (GRU) to process time-series sEMG inputs, estimate multi-joint kinematics and external loads, and predict joint torque while incorporating physics-based constraints during training. Experimental validation, using sEMG data from five participants performing elbow flexion-extension tasks with 0 kg, 2 kg, and 4 kg loads, showed that PiGRN accurately predicted joint torques for 10 novel movements. RMSE values ranged from 4.02\% to 11.40\%, with correlation coefficients between 0.87 and 0.98. These results underscore PiGRN's potential for real-time applications in exoskeletons and rehabilitation. Future work will focus on expanding datasets, improving musculoskeletal models, and investigating unsupervised learning approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.