Papers
Topics
Authors
Recent
2000 character limit reached

Near-Optimal Policy Identification in Robust Constrained Markov Decision Processes via Epigraph Form (2408.16286v4)

Published 29 Aug 2024 in cs.LG and math.OC

Abstract: Designing a safe policy for uncertain environments is crucial in real-world control systems. However, this challenge remains inadequately addressed within the Markov decision process (MDP) framework. This paper presents the first algorithm guaranteed to identify a near-optimal policy in a robust constrained MDP (RCMDP), where an optimal policy minimizes cumulative cost while satisfying constraints in the worst-case scenario across a set of environments. We first prove that the conventional policy gradient approach to the Lagrangian max-min formulation can become trapped in suboptimal solutions. This occurs when its inner minimization encounters a sum of conflicting gradients from the objective and constraint functions. To address this, we leverage the epigraph form of the RCMDP problem, which resolves the conflict by selecting a single gradient from either the objective or the constraints. Building on the epigraph form, we propose a bisection search algorithm with a policy gradient subroutine and prove that it identifies an $\varepsilon$-optimal policy in an RCMDP with $\tilde{\mathcal{O}}(\varepsilon{-4})$ robust policy evaluations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: