Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LMT-GP: Combined Latent Mean-Teacher and Gaussian Process for Semi-supervised Low-light Image Enhancement (2408.16235v1)

Published 29 Aug 2024 in cs.CV

Abstract: While recent low-light image enhancement (LLIE) methods have made significant advancements, they still face challenges in terms of low visual quality and weak generalization ability when applied to complex scenarios. To address these issues, we propose a semi-supervised method based on latent mean-teacher and Gaussian process, named LMT-GP. We first design a latent mean-teacher framework that integrates both labeled and unlabeled data, as well as their latent vectors, into model training. Meanwhile, we use a mean-teacher-assisted Gaussian process learning strategy to establish a connection between the latent and pseudo-latent vectors obtained from the labeled and unlabeled data. To guide the learning process, we utilize an assisted Gaussian process regression (GPR) loss function. Furthermore, we design a pseudo-label adaptation module (PAM) to ensure the reliability of the network learning. To demonstrate our method's generalization ability and effectiveness, we apply it to multiple LLIE datasets and high-level vision tasks. Experiment results demonstrate that our method achieves high generalization performance and image quality. The code is available at https://github.com/HFUT-CV/LMT-GP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub