Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving Lagarias-Odlyzko Algorithm For Average-Case Subset Sum: Modular Arithmetic Approach (2408.16108v1)

Published 28 Aug 2024 in cs.DS and cs.CR

Abstract: Lagarias and Odlyzko (J.~ACM~1985) proposed a polynomial time algorithm for solving \emph{almost all}'' instances of the Subset Sum problem with $n$ integers of size $\Omega(\Gamma_{\text{LO}})$, where $\log_2(\Gamma_{\text{LO}}) > n^2 \log_2(\gamma)$ and $\gamma$ is a parameter of the lattice basis reduction ($\gamma > \sqrt{4/3}$ for LLL). The algorithm of Lagarias and Odlyzko is a cornerstone result in cryptography. However, the theoretical guarantee on the density of feasible instances has remained unimproved for almost 40 years. In this paper, we propose an algorithm to solvealmost all'' instances of Subset Sum with integers of size $\Omega(\sqrt{\Gamma_{\text{LO}}})$ after a single call to the lattice reduction. Additionally, our argument allows us to solve the Subset Sum problem for multiple targets while the previous approach could only answer one target per call to lattice basis reduction. We introduce a modular arithmetic approach to the Subset Sum problem. The idea is to use the lattice reduction to solve a linear system modulo a suitably large prime. We show that density guarantees can be improved, by analysing the lengths of the LLL reduced basis vectors, of both the primal and the dual lattices simultaneously.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.