Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1
Gemini 2.5 Flash 128 tok/s Pro
Gemini 2.5 Pro 41 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies (2408.15294v2)

Published 27 Aug 2024 in cs.LG and cs.AI

Abstract: Developing novel predictive models with complex biomedical information is challenging due to various idiosyncrasies related to heterogeneity, standardization or sparseness of the data. We previously introduced a person-centric ontology to organize information about individual patients, and a representation learning framework to extract person-centric knowledge graphs (PKGs) and to train Graph Neural Networks (GNNs). In this paper, we propose a systematic approach to examine the results of GNN models trained with both structured and unstructured information from the MIMIC-III dataset. Through ablation studies on different clinical, demographic, and social data, we show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: