Exploiting Approximate Symmetry for Efficient Multi-Agent Reinforcement Learning (2408.15173v1)
Abstract: Mean-field games (MFG) have become significant tools for solving large-scale multi-agent reinforcement learning problems under symmetry. However, the assumption of exact symmetry limits the applicability of MFGs, as real-world scenarios often feature inherent heterogeneity. Furthermore, most works on MFG assume access to a known MFG model, which might not be readily available for real-world finite-agent games. In this work, we broaden the applicability of MFGs by providing a methodology to extend any finite-player, possibly asymmetric, game to an "induced MFG". First, we prove that $N$-player dynamic games can be symmetrized and smoothly extended to the infinite-player continuum via explicit Kirszbraun extensions. Next, we propose the notion of $\alpha,\beta$-symmetric games, a new class of dynamic population games that incorporate approximate permutation invariance. For $\alpha,\beta$-symmetric games, we establish explicit approximation bounds, demonstrating that a Nash policy of the induced MFG is an approximate Nash of the $N$-player dynamic game. We show that TD learning converges up to a small bias using trajectories of the $N$-player game with finite-sample guarantees, permitting symmetrized learning without building an explicit MFG model. Finally, for certain games satisfying monotonicity, we prove a sample complexity of $\widetilde{\mathcal{O}}(\varepsilon{-6})$ for the $N$-agent game to learn an $\varepsilon$-Nash up to symmetrization bias. Our theory is supported by evaluations on MARL benchmarks with thousands of agents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.