Papers
Topics
Authors
Recent
2000 character limit reached

Evidence-Enhanced Triplet Generation Framework for Hallucination Alleviation in Generative Question Answering (2408.15037v1)

Published 27 Aug 2024 in cs.CL and cs.AI

Abstract: To address the hallucination in generative question answering (GQA) where the answer can not be derived from the document, we propose a novel evidence-enhanced triplet generation framework, EATQA, encouraging the model to predict all the combinations of (Question, Evidence, Answer) triplet by flipping the source pair and the target label to understand their logical relationships, i.e., predict Answer(A), Question(Q), and Evidence(E) given a QE, EA, and QA pairs, respectively. Furthermore, we bridge the distribution gap to distill the knowledge from evidence in inference stage. Our framework ensures the model to learn the logical relation between query, evidence and answer, which simultaneously improves the evidence generation and query answering. In this paper, we apply EATQA to LLama and it outperforms other LLMs-based methods and hallucination mitigation approaches on two challenging GQA benchmarks. Further analysis shows that our method not only keeps prior knowledge within LLM, but also mitigates hallucination and generates faithful answers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.