Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quasistatic evolution of Orlicz-Sobolev nematic elastomers (2408.14911v1)

Published 27 Aug 2024 in math.AP

Abstract: We investigate the variational model for nematic elastomer proposed by Barchiesi and DeSimone with the director field defined on the deformed configuration under general growth conditions on the elastic density. This leads us to consider deformations in Orlicz-Sobolev spaces. Our work builds upon a previous paper by Henao and the Second Author, and extends their analysis to the quasistatic setting. The overall strategy parallels the one devised by the First author in the case of Sobolev deformations for a similar model in magnetoelasticity. We prove two existence results for energetic solutions in the rate-independent setting. The first result concerns quasistatic evolutions driven by time-dependent applied loads. For this problem, we establish suitable Poincar\'{e} and trace inequalities in modular form to recover the coercivity of the total energy. The second result ensures the existence of quasistatic evolution for both time-depend applied loads and boundary conditions under physical confinement. In its proof, we follow the approach advanced by Francfort and Mielke based on a multiplicative decomposition of the deformation gradient and we implement it for energies comprising terms defined on the deformed configuration. Both existence results rely on a compactness theorem for sequences of admissible states with uniformly bounded energy which yields the strong convergence of the composition of the nematic fields with the corresponding deformations. While proving it, we show the regular approximate differentiability of Orlicz-Sobolev maps with suitable integrability, thus generalizing a classical result for Sobolev maps due to Goffman and Ziemer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.