Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Leveraging Self-supervised Audio Representations for Data-Efficient Acoustic Scene Classification (2408.14862v1)

Published 27 Aug 2024 in cs.SD and eess.AS

Abstract: Acoustic scene classification (ASC) predominantly relies on supervised approaches. However, acquiring labeled data for training ASC models is often costly and time-consuming. Recently, self-supervised learning (SSL) has emerged as a powerful method for extracting features from unlabeled audio data, benefiting many downstream audio tasks. This paper proposes a data-efficient and low-complexity ASC system by leveraging self-supervised audio representations extracted from general-purpose audio datasets. We introduce BEATs, an audio SSL pre-trained model, to extract the general representations from AudioSet. Through extensive experiments, it has been demonstrated that the self-supervised audio representations can help to achieve high ASC accuracy with limited labeled fine-tuning data. Furthermore, we find that ensembling the SSL models fine-tuned with different strategies contributes to a further performance improvement. To meet low-complexity requirements, we use knowledge distillation to transfer the self-supervised knowledge from large teacher models to an efficient student model. The experimental results suggest that the self-supervised teachers effectively improve the classification accuracy of the student model. Our best-performing system obtains an average accuracy of 56.7%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube