Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Personalized Video Summarization using Text-Based Queries and Conditional Modeling (2408.14743v1)

Published 27 Aug 2024 in cs.CV and cs.IR

Abstract: The proliferation of video content on platforms like YouTube and Vimeo presents significant challenges in efficiently locating relevant information. Automatic video summarization aims to address this by extracting and presenting key content in a condensed form. This thesis explores enhancing video summarization by integrating text-based queries and conditional modeling to tailor summaries to user needs. Traditional methods often produce fixed summaries that may not align with individual requirements. To overcome this, we propose a multi-modal deep learning approach that incorporates both textual queries and visual information, fusing them at different levels of the model architecture. Evaluation metrics such as accuracy and F1-score assess the quality of the generated summaries. The thesis also investigates improving text-based query representations using contextualized word embeddings and specialized attention networks. This enhances the semantic understanding of queries, leading to better video summaries. To emulate human-like summarization, which accounts for both visual coherence and abstract factors like storyline consistency, we introduce a conditional modeling approach. This method uses multiple random variables and joint distributions to capture key summarization components, resulting in more human-like and explainable summaries. Addressing data scarcity in fully supervised learning, the thesis proposes a segment-level pseudo-labeling approach. This self-supervised method generates additional data, improving model performance even with limited human-labeled datasets. In summary, this research aims to enhance automatic video summarization by incorporating text-based queries, improving query representations, introducing conditional modeling, and addressing data scarcity, thereby creating more effective and personalized video summaries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube