Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Uncountable sets and an infinite linear order game (2408.14624v1)

Published 26 Aug 2024 in math.LO

Abstract: An infinite game on the set of real numbers appeared in Matthew Baker's work [Math. Mag. 80 (2007), no. 5, pp. 377--380] in which he asks whether it can help characterize countable subsets of the reals. This question is in a similar spirit to how the Banach-Mazur Game characterizes meager sets in an arbitrary topological space. In a paper, Will Brian and Steven Clontz prove that in Baker's game, Player II has a winning strategy if and only if the payoff set is countable. They also asked if it is possible, in general linear orders, for Player II to have a winning strategy on some uncountable set. To this we give a positive answer and moreover construct, for every infinite cardinal $\kappa$, a dense linear order of size $\kappa$ on which Player II has a winning strategy on all payoff sets. We finish with some future research questions, further underlining the difficulty in generalizing the characterization of Brian and Clontz to linear orders.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: