Uncountable sets and an infinite linear order game (2408.14624v1)
Abstract: An infinite game on the set of real numbers appeared in Matthew Baker's work [Math. Mag. 80 (2007), no. 5, pp. 377--380] in which he asks whether it can help characterize countable subsets of the reals. This question is in a similar spirit to how the Banach-Mazur Game characterizes meager sets in an arbitrary topological space. In a paper, Will Brian and Steven Clontz prove that in Baker's game, Player II has a winning strategy if and only if the payoff set is countable. They also asked if it is possible, in general linear orders, for Player II to have a winning strategy on some uncountable set. To this we give a positive answer and moreover construct, for every infinite cardinal $\kappa$, a dense linear order of size $\kappa$ on which Player II has a winning strategy on all payoff sets. We finish with some future research questions, further underlining the difficulty in generalizing the characterization of Brian and Clontz to linear orders.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.